

- **1.** Write $3^7 = 2187$ in logarithmic form.
- **2.** Write $\log_8 16 = \frac{4}{3}$ in exponential form.
- **3.** Express log₃ 5 in terms of common logarithms. Then approximate its value to four decimal places.
- **4.** Evaluate $\log_2 \frac{1}{32}$.

Use $\log_4 7 \approx 1.4037$ and $\log_4 3 \approx 0.7925$ to approximate the value of each expression.

5.
$$\log_4 21$$
 6. $\log_4 \frac{7}{12}$

Simplify each expression.

7.
$$(3^{\sqrt{8}})^{\sqrt{2}}$$
 8. $81^{\sqrt{5}} \div 3^{\sqrt{5}}$

Solve each equation or inequality. Round to four decimal places if necessary.

9. $27^{2p+1} = 3^{4p-1}$ 10. $\log_m 144 = -2$ 11. $\log_3 3^{(4x-1)} = 15$ 12. $4^{2x-3} = 9^{x+3}$ 13. $2e^{3x} + 5 = 11$ 14. $\log_2 x < 7$ 15. $\log_9 (x+4) + \log_9 (x-4) = 1$ 16. $\log_2 5 + \frac{1}{3} \log_2 27 = \log_2 x$

COINS For Exercises 17 and 18, use the following information.

You buy a commemorative coin for \$25. The value of the coin increases at a rate of 3.25% per year.

- **17.** How much will the coin be worth in 15 years?
- **18.** After how many years will the coin have doubled in value?
- **19. MULTIPLE CHOICE** The population of a certain country can be modeled by the equation $P(t) = 40 e^{0.02t}$, where *P* is the population in millions and *t* is the number of years since 1900. When will the population be 400 million?

Α	1946	C	2015
В	1980	D	2045

STARS For Exercises 20–22, use the following information.

Some stars appear bright only because they are very close to us. Absolute magnitude *M* is a measure of how bright a star would appear if it were 10 parsecs, about 32 light years, away from Earth. A lower magnitude indicates a brighter star. Absolute magnitude is given by $M = m + 5 - 5 \log d$, where *d* is the star's

distance from Earth measured in parsecs and *m* is its apparent magnitude.

Star	Apparent Magnitude	Distance (parsecs)
Sirius	-1.44	2.64
Vega	0.03	7.76

- **20.** Sirius and Vega are two of the brightest stars. Which star appears brighter?
- **21.** Find the absolute magnitudes of Sirius and Vega.
- **22.** Which star is actually brighter? That is, which has a lower absolute magnitude?
- **23. MULTIPLE CHOICE** Humans have about 1,400,000 hairs on their head and lose an average of 75 hairs each day. If a person's body were to *never* replace a hair, approximately how many years would it take for a person to have 1000 hairs left on their head? (Assume that a person can live significantly longer than the average life span.)

F	85 years	Η	257 years
G	113 years	J	511 years

- **24. DINOSAURS** A paleontologist finds that the Carbon-14 found in the bone is $\frac{1}{12}$ of that found in living bone tissue. Could this bone have belonged to a dinosaur? Explain your reasoning. (*Hint:* The dinosaurs lived from 220 million to 63 million years ago.)
- **25. HEALTH** Radioactive iodine is used to determine the health of the thyroid gland. It decays according to the equation $y = ae^{-0.0856t}$, where *t* is in days. Find the half-life of this substance.